

Nuclear Spin-lattice Relaxation in Cuprate Superconductors

– Some New Approaches

Detlef Brinkmann^a and Andrei Yu. Zavidonov^{a,b,c}

^a Physik-Institut, University of Zürich, CH-8057 Zürich, Switzerland

^b Physics Department, Kazan State University, 420008 Kazan, Russia

^c Present address: MATH POINT LTD, 509-720 Spadina Ave, Toronto, ON M5S 2H8, Canada

Reprint requests to Prof. D. B.; E-mail: Detlef.Brinkman@physik.unizh.ch

Z. Naturforsch. **57 a**, 479–487 (2002); received December 17, 2001

*Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions,
Hiroshima, Japan, September 9-14, 2001.*

This paper reviews theoretical studies of nuclear spin-lattice relaxation we have made for the normal state of the cuprate high-temperature superconductors $\text{YBa}_2\text{Cu}_3\text{O}_7$, $\text{YBa}_2\text{Cu}_4\text{O}_8$, and $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$. In the case of *planar* sites, we calculated the dynamic spin susceptibility within a constraint-free theory based on the presentation of the $t - J$ model in terms of Hubbard operators. The results for ^{63}Cu , ^{17}O , and ^{89}Y are in good agreement with experimental data. The relaxation (and the Knight shift) of *chain* Cu in $\text{YBa}_2\text{Cu}_3\text{O}_7$ and $\text{YBa}_2\text{Cu}_4\text{O}_8$ requires a different treatment; our approach uses the Luttinger-liquid model. Again, good agreement with experiment is achieved.

Key words: NMR Relaxation; $t - J$ Model; Cuprate Superconductors.